محققان با استفاده از فناوری نانو در حال ساختن کپسولهایی با ابعاد نانومتر هستند که علاوه بر اندازه غیر قابل تصور ، قدرت تشخیص بافتهای مریض را داشته و دقیقا روی این بافت قرار گرفته و مقدار داروی لازم را به آنها می‌رساند. این پدیده را دارو‌سازی می‌گویند. در آزمایشی که به تازگی به انجام رسیده نشان داده شده است که حمله به سلولهای سرطانی با استفاده از ذرات نانو 100 برابر بازده عمل را افزایش می‌دهد. همچنین با استتفاده از فناوری نانو ، نوارهای زخم بندی هوشمندی درست شده است، که به محض مشاهده نخستین علائم عفونت در مقیاس مولکولی ، پزشکان را مطلع می‌سازد.

عقاید مختلف در مورد نانوتکنولوژی

مهمترین نکته درباره موقعیت کنونی فناوری نانو آن است که اکنون دانشمندان این توانایی را پیدا کرده‌اند که در تراز تک اتمها به بهره‌گیری از آنها بپردازند و این توانایی بالقوه می‌تواند زمینه ساز بسیاری از تحولات بعدی باشد. یک گروه از برجسته‌ترین محققان در حوزه نانوتکنولوژی بر این اعتقاد هستند که می‌توان بدون آسیب رساندن به سلولهای حیاتی ، در درون آنها به کاوش و تحقیق پرداخت. شیوه‌های کنونی برای بررسی سلولها بسیار خام و ابتدایی است و دانشمندان برای شناخت آنچه که در درون سلول اتفاق می‌افتد ناگزیرند سلولها را از هم بشکافند و در این حال بسیاری از اطلاعات مهم مربوط به سیالهای درون سلول یا ارگانهای موجود در آن از بین می‌رود.

رابطه نانوتکنولوژی و بیوتکنولوژی

نانوتکنولوژی مجموعه‌ای است از فناوریهایی که به صورت انفرادی یا باهم در جهت بکارگیری و یا درک بهتر علوم مورد استفاده قرار می‌گیرند. بیوتکنولوژی جزء فناورهای در حال توسعه می‌باشد که با بکارگیری مفهوم نانو به پیشرفتهای بیشتری دست خواهد یافت. نانوبیوتکنولوژی به عنوان یکی از حوزه‌های کلیدی قرن 21 شناخته شده است که امکان تعامل با سیستمهای زنده را در مقیاس مولکولی فراهم می‌آورد. بیوتکنولوژی به نانوتکنولوژی مدل ارائه می‌دهد، در حالی که نانوتکنولوژی با در اختیار گذاشتن ابزار برای بیوتکنولوژی آن را برای رسیدن به اهدافش یاری می‌رساند.

شناسایی پروتئینهای ترشح شده از سلولها

یک گروه از محققان که در گروهی موسوم به اتحاد سیستمهای زیستی گرد آمده‌اند، سرگرم تکمیل ابزارهای ظریفی هستند که هدف آن بررسی اوضاع و احوال درون سلول در زمان واقعی و بدون آسیب رساندن به اجزای درونی سلول یا مداخله در فعالیت بخشهای داخلی آن است. ابزاری که این گروه مشغول ساخت آن هستند ردیف‌هایی از لوله‌ها یا سیمهای بسیار ظریف هستند که قادرند وظایف مختلفی را به انجام برسانند. از جمله آنکه هزاران پروتئینی را که بوسیله سلولها ترشح می‌شود شناسایی ‌می‌کنند.

مهندسی بافت Tssue engeering

سطح استخوان از ترکیباتی تشکیل شده است که حدودا 100 نانومتر عرض دارند. اگر سطح یک عضو مصنوعی به استخوان طبیعی پیوند بخورد بدن آن را پس می‌زند. دلیل امر تولید بافت مصنوعی در محل استخوان طبیعی و سطح مصنوعی می‌باشد. استئوبلاستها در بافت پیوندی استخوان وجود دارند و بخصوص در استخوانهای در حال رشد دارای فعالیت چشمگیری هستند. با ایجاد ذراتی در اندازه نانو در سطح مفاصل و استخوانهای مصنوعی احتمال دفع عضو جایگزین به دلیل تحریک سلولهای استئوبلاست کمتر می‌شود. ایجاد این ذرات با ترکیب مواد پلیمری ، سرامیکی و فلزی چندی پیش توسط دانشمندان به اثبات رسید.

مواد مورد استفاده در ترمیم استخوان

تیتانیوم ماده شناخته شده‌ای برای ترمیم استخوان است و به دلیل ترکیبات خاص و وزن زیادش جهت بالا بردن میزان استحکام بطور وسیع در دندانپزشکی و ارتوپدی استفاده می‌شود. ولی متاسفانه به دلیل آنکه بخش چسبنده‌ای که با Apatite (بخش فعال استخوان) پوشیده شده با تیتانیوم سازگار نیست فاقد فعالیت زیستی می‌باشد. استخوان واقعی نانوکامپوزیتی از موادی است که از ترکیب بلورهای هیدروکسید Apatite در ماتریکس آلی بوجود آمده و به حالت منفرد یافت می‌شود. استخوان طبیعی از نظر مکانیکی ، ضخیم و در عین حال دارای الاستیسیته می‌باشد و در نتیجه قابل ترمیم است.

ساخت یک دندان

مکانیسم نانویی دقیقی که منجر به تولید ترکیباتی با خواص مفید شود، همچنان مورد مطالعه و بررسی قرار دارد. اخیرا با استفاده از روش tribology یک دندان مصنوعی به صورت viscoelastic ساخته شده و دارای روکش نانویی می‌باشد. از خواص منحصر به فرد این دندان مصنوعی می‌توان به عایق بودن آن در مقابل خراش و افزایش التیام دندان اشاره کرد.

معالجه سرطان به روش فتودینامیک

معالجه سرطان با استفاده از روش فتودینامیک بر اساس نابودی سلولهای سرطانی بوسیله لیزری است که تولید اکسیژن اتمی می‌کند. به این طریق که اکسیژن اتمی رنگ خاصی را تولید می‌کند و سلولهای سرطانی بیش از سلولهاهای دیگر آن را جذب می‌کنند. در نتیجه فقط سلولهای سرطانی توسط اشعه لیزر نابود می‌شوند. البته یکی از معایب این روش آن است که به دلیل آب گریز بودن مواد رنگی ، این مواد به سمت پوست و چشمها حرکت می‌کند و در صورتی که شخص در معرض نور خورشید قرار گیرد باعث حساسیت در پوست و چشمها می‌شود.
برای این حل مشکل صورتهای آب گریز مولکول رنگها را داخل ذرات نانویی متخلخل مثل ormosil nano partical که دارای منافذی در حدود یک نانومتر می‌باشند قرار می‌دهند که این دارای دو مزیت است اولا از انتقال مواد رنگی به سایر نقاط بدن جلوگیری می‌کنند و ثانیا امکان ورود و خروج آزادانه اکسیژن را مهیا می‌سازد.

ساخت فیبر نوری

گروههایی از محققان در تلاشند تا ابزارهای مناسب در مقیاس نانو برای بررسی جهان سلولها ابداع کنند. یکی از این ابزارها فیبر نوری است که ضخامت نوک آن 40 نانومتر است و بر روی نوک آن نوعی پادتن جا داده شده که قادر است خود را به مولکول مورد نظر در درون سلول متصل سازد. این فیبر نوری با استفاده از فیبرهای معمولی و تراش آنها ساخته شده و بر روی فیبر پوششی از نقره اندود شده تا از فرار نور جلوگیری به عمل آورد. نحوه عمل این فیبر نوری درخور توجه است.
از آنجا که قطر نوک این فیبر نوری ، از طول موج نوری که برای روشن کردن سلول مورد استفاده قرار می‌گیرد به مراتب بزرگتر است، فوتونهای نور نمی‌توانند خود را تا انتهای فیبر برسانند، درعوض در نزدیکی نوک فیبر جمع می‌شوند و یک میدان نوری بوجود می‌آورند که تنها می‌تواند مولکولهایی را که در تماس با نوک فیبر قرار می‌گیرند تحریک کند.به نوک این فیبر نوری یک پادتن متصل است و محققان به این پادتن یک مولکول فلورسان می‌چسبانند و آنگاه نوک فیبر را به درون یک سلول فرو می‌کنند.
در درون سلول ، نمونه مشابه مولکول فلورسان نوک فیبر ، این مولکول را کنار می‌زند و خود جای آن را می‌گیرد. به این ترتیب نور ساطع شده از مولکول فلورسان از بین می‌رود و فضای درون سلول تنها با نوری که به وسیله میدان موجود در فیبر نوری بوجود می‌آید روشن می‌گردد. درنتیجه محققان قادر می‌شوند یک تک مولکول را در درون سلول مشاهده کنند. مزیت بزرگ این روش در آن است که باعث مرگ سلول نمی‌شود و به دانشمندان اجازه می‌دهد درون سلول را در هنگام فعالیت آن مشاهده کنند.

شناسایی مولکولهای زیستی

نانوتکنولوژی همچنین به محققان امکان می‌دهد که بتوانند رویدادهای بسیار نادر یا مولکولهای با چگالی بسیار کم را مشاهده کنند. به عنوان مثال بلورهای مینیاتوری نیمه هادیهای فلزی در یک فرکانس خاص از خود نور ساطع می‌کنند و از این نور می‌توان برای مشخص کردن مجموعه‌ای از مولکولهای زیستی و الصاق برچسب برای شناسایی آنها استفاده کرد.

کنترل فعالیت درون سلولها

محققان امیدوار هستند که در آینده‌ای نه چندان دور با استفاده از نانوتکنولوژی موفق شوند امور داخلی هر سلول را تحت کنترل خود درآورند. هم اکنون گامهای بلندی در این زمینه برداشته شده و به عنوان نمونه دانشمندان می‌توانند فعالیت پروتئینها و مولکول DNA را در درون سلول کنترل کنند. به این ترتیب نانوتکنولوژی به محققان امکان می‌دهد تا اطلاعات خود را درباره سلولها یعنی اصلی‌ترین بخش سازنده بدن جانداران به بهترین وجه کامل سازند.

چشم انداز بحث

با توجه به پیشرفت سریع و دامنه گسترده بیوتکنولوژی زمینه‌های بروز انقالاب بیوتکنولوژی عصر جدیدی در علوم مختلف مانند بیولوژی ، پزشکی ، فارماکولوژی و مهندسی ژنتیک فراهم گردیده است. به علاوه حوزه‌های دیگری مانند اقتصاد و سیاست نیز از آن تاثیر بسزایی پذیرفته است. هم اکنون از دیدگاه اخلاق زیستی در این رابطه سوالات مهم و اساسی مطرح شده است که علاوه بر اثرات بسزایی که بر پیشرفتهای علمی و سایر زمینه‌های علوم زیستی دارد، نسلهای آینده بشر را نیز به صورت گسترده‌ای تحت‌الشعاع قرار می‌دهد. در این باره مشارکت مداوم دانشمندان کنجکاو و خردمندی می‌تواند راه گشا بوده و بایستی با در نظر گرفتن این منابع و پیشرفتهای جدید و با امید به حل چنین مشکلات و مسائلی با فائق آمدن بر همه محدودیتها در جهت گسترش این دانش فعالیت نمود.

 دارو رسانی به بافتها با کمک نانوتکنولوژی

 
نانولوله‌هایی که از نوع پلیمر هادی ساخته شده‌اند، می‌توانند در برابر سیگنال‌های الکتریکی پاسخ داده ، در رهایش هوشمند دارو مورد استفاده قرار گیرند.

قرار دادن نانولوله‌ها بروی سطح میکروالکترودها می‌تواند به تولید دستگاهی منجر شود که با قرار گرفتن درون بدن به تدریج و طبق زمان‌بندی مشخصی دارو آزاد کند.

`
دکتر David martin` مدیر یک تیم تحقیقاتی در دانشگاه میشیگان در مقاله خود در مجله Journal Advanced Material ، به تفصیل درباره چگونگی تهیه این دستگاه رهایش دارو توضیح داده است.

در این مقاله آمده است که آنها با استفاده از نانولوله‌هایی از جنس پلیمر هادی مانند «3 و 4- اتیلن دی‌اکسید تیوفن» یا PEDOT و قرار دادن آنها بروی میکروالکترودها به این مهم دست یافته‌اند.

این فرآیند با پوشاندن میکروالکترودهای طلا با نانوالیافی از جنس پلیمر زیست تخریب‌پذیر PLGA که با ذرات دارو آمیخته شده است، آغاز می‌شود.

افزودن محلول PEDOT به الکترود پوشیده از PLGA و اعمال جریان ، باعث رشد نانولوله‌ها بر روی دیواره‌های منظم الیاف حاصل از نانوالیاف PLGA می‌شود.

در حالت عادی PLGA به آهستگی از بین می‌رود و داروی درون آن آزاد می‌شود، ولی وقتی این الیاف توسط نانولوله‌های PEDOT احاطه شوند مقدار بسیار ناچیزی از دارو و PLGA خارج شده و هدر می‌رود، در این حالت با اعمال جریان یک ولتی در مدت زمان بسیار کوتاه (10 ثانیه) ، دارو بطور کامل آزاد می‌شود.

این محققان می‌گویند: که در زمان اعمال جریان الکتریکی ، نانولوله‌ها منقبض می‌شوند و این فشردگی به داروی درون نانولوله‌ها منتقل شده ، باعث خروج آنها از انتهای نانولوله‌ می‌شود. به علاوه آنها با کنترل ولتاژ اعمال شده به الکترود در هنگام تحریک نانولوله‌ها ، میزان داروی خروجی را تحت کنترل خود درآورده‌اند.

از دیگر مزایای روش به کار رفته این است که نانولوله‌های پلیمری هادی تأثیر برجسته‌ای در برابر مقاومت الکتریکی میکروالکترودهای طلا از خود نشان می‌دهد. به این شکل ، کاهش مقاومت الکتریکی میکروالکترودها باعث افزایش قابل توجهی در کارایی نانولوله‌ها می‌شود.

نانوتکنولوژی در مبارزه با سرطان مغز

 
به گفته محققان آمریکایی، نانو ذرات می‌توانند غلظت‌های زیاد داروها را درون تومورهای مغزی متمرکز کرده و آنها را نابود سازند.
به گزارش پایگاه جامع پزشکی پرتو ایران، محققان دانشگاه میشیگان ( (U-Mداروی فوتوفرین ( (Photofrinرا بر روی نانو ذرات (ذراتی به اندازه یک میلیونم متر) سوار کردند که بوسیله آنها می‌توانند تومور را هدف‌گیری کنند. فوتوفرین بوسیله جریان خون به تومور می‌رسد سپس پزشکان بوسیله نور لیزری مخصوصی دارو را فعال می‌کنند و این کار باعث بسته شدن عروق خونی تغذیه‌کننده تومور می‌شود و تومور بدون تغذیه خونی نابود می‌شود.
از این دارو برای درمان انواع مختلف تومور استفاده می‌شود. با این وجود استفاده از فوتوفرین به تنهایی به بافت‌های سالم آسیب می‌زند اما نانو ذرات باعث می‌شوند که دارو فقط در تومور آزاد شود. این مطالعه در شماره اخیر نشریه تحقیقات بالینی سرطان منتشر شده است. محققان در این مطالعه دریافتند، موش‌های مبتلا به سرطان که بصورت قدیمی با فوتوفرین درمان شدند ۱۳روز زنده ماندند ولی موش‌هایی که با روش اخیر درمان شدند بطور متوسط ۳۳روز زنده ماندند.
دکتر النواز رحمت‌الله استاد رادیولوژی و انکولوژی می‌گوید: برای درمان تومورهای مغزی می‌بایست در چارچوب جدیدی فکر کرد. داروها در مسیر عادی خود دارای قابلیت نفوذ به مغز نیستند و به همین دلیل برخی درمان‌های فعلی کارایی لازم را ندارند.
اما هدف‌گیری تومور با نانو ذرات حاوی دارو بر این مشکل غلبه می‌کند. با این وجود برای کاربرد نانو ذرات حاوی دارو بر انسان به انجام تحقیقات بیشتری نیاز است.